Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 768: 144964, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736321

RESUMO

Freshwater lenses connect the terrestrial and marine realm via groundwater discharge at the edges of islands and serve as drinking water resources. We studied the redox-sensitive metals U, Mo, V, and Tl along the redox gradient of fresh groundwater lenses on Spiekeroog Island, northern Germany. Groundwater solute concentrations were linked to groundwater age and redox characteristics. We further quantified the contribution of precipitation, sea spray, and aquifer matrix to the groundwater metal concentrations and evaluated the sink and source function of the aquifer under oxic and reducing conditions. We found that biogeochemical processes altered the concentrations of the trace metals. In young, oxygen to nitrate reducing zones, the aquifer matrix represented the major metal source to the groundwater. For Tl, rain was an additional important (anthropogenic) source. Under manganese and iron oxide to sulfate reducing conditions, U and Tl were sensitive to redox dependent removal, whereas Mo and V were less affected by reductive precipitation/adsorption. In detail, 99% of dissolved Tl, 88% of U, 66% of Mo, and 44% of V were removed to the solid phase in comparison to values from less reducing zones. Large parts of the western freshwater lens on Spiekeroog were anoxic. For this reason, the delivery of aquifer derived metals to the ocean via fresh groundwater discharge appeared to be limited. Higher U, Mo, V, and Tl concentrations were observed in the presently developing young freshwater lens in the east of Spiekeroog Island. This suggests that less reducing groundwater lenses may be a source of these metals to the adjacent beach/coastal seawater. Especially for V, freshwater discharge from sandy coastal aquifers may be important, as groundwater concentrations exceeded seawater concentration under oxic as well as anoxic conditions. Regarding the suitability of the freshwater as drinking water, all measured trace metal concentrations were classified as uncritical.

2.
Sci Total Environ ; 649: 264-283, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173034

RESUMO

Organic-poor, permeable quartz sands are often present at land-sea transition zones in coastal regions. Yet, the biogeochemical cycles of carbon, sulfur, and iron are not well studied here. The aim of this work was, therefore, to improve our understanding regarding the chemical processes in these prominent coastal sediments. A 10 m core was collected at a dune base of the barrier island Spiekeroog, Germany, for this purpose. Additionally, groundwater was sampled from a multi-level well for one year to record seasonal hydrochemical variations. Methods included the analyses of geochemical (total carbon, total inorganic carbon, reactive iron, total sulfur, reduced inorganic sulfur) and hydrochemical parameters (field parameters, major ions, DOC, and molecular compositions of DOM), as well as stable sulfur isotopes (δ34S-sulfate, -sulfide, -total reduced inorganic sulfur). Moreover, optically stimulated luminescence (OSL) dating was applied. Results show that the core sediments are very young (<500 a) and were rapidly deposited. They are characterized by remarkably low contents of organic carbon (<0.1% dw.), reactive iron (~10 mmol/kg), and iron sulfides (<3 mmol/kg). Groundwater salinities were low in the top core sediments and increased at depth during most times of the year. However, the sampling site is subject to (seasonally) varying salinities, which could be linked to the biogeochemical cycles. For instance, the infiltration of seawater-derived labile DOM during inundation events drives microbial respiration besides sedimentary organic matter. Oxygen and nitrate were the dominant electron acceptors for the decomposition of organic matter in near-surface groundwater, while sulfate reduction was constrained to the lower brackish sediments. Here, authigenic pyrite formation was inferred based on the detection of dissolved sulfide, intact pyrite framboids, and matching stable sulfur isotope signatures of dissolved and solid sulfides. We concluded that the extremely low organic carbon contents limit pyrite formation in the organic-poor, permeable quartz sands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...